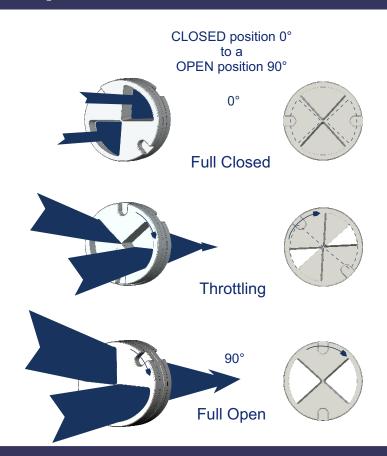


HYDRA HCY Throttling Valve

Hydroplex HCY TWIN DISC Valves are engineered with a specific purpose to manage high-pressure liquids and gases, offering precise control, dependability, and prolonged service. The valve's body and control element are designed to maximize the time between services. The modular design ensures that all worn-out parts can be replaced, making the valve easy to service and fully repairable. This valve is built to exceed your process requirements.

The design is flexible enough to allow field conversions from manual to automated operations, and from single-stage to multistage pressure drop. An optional wear sleeve is available to mitigate the effects of cavitation and mechanical erosion, which are common in the fluid recovery process following pressure reduction. The unique hub design allows for a mix or match of inlet and outlet connections to suit process piping configurations or replacements due to wear.


Principle of Operation

The valve features two adjacent twin discs, each equipped with two precision orifices that can be either round hole or pie-shaped.

When the valve is in the fully closed position, the orifices are positioned 90 degrees out of alignment, forming an ANSI Class IV seal.

When the valve is in the throttling position, the orifices align with each other, forming a precision orifice that supports the flow or pressure requirements of the process. It is advised that for sustained operation, the opening should not be less than 30% for gas and 40% for liquid service.

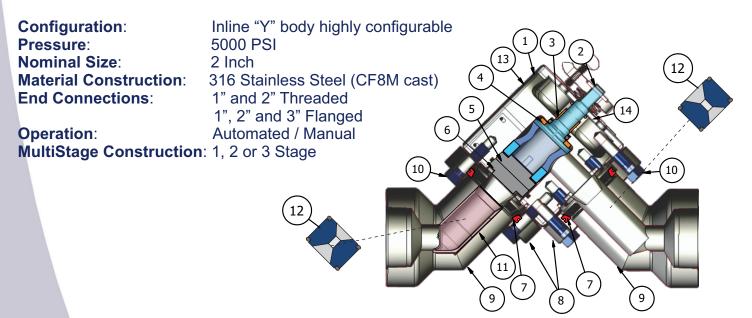
When the valve is in the full open position, the orifices align with each other, facilitating the maximum rated flow through the valve

ANSI Class IV Seal

The control discs are lapped to within two light-bands of flatness (+/- 0.00002") to achieve a positive shut-off and maintain precise control.

The upstream disc as a result of differential pressure floats against the downstream disc creating a mated interface and assures a positive Class IV seal.

Additionally, the differential pressure across the disc stabilizes the control surface and eliminates trim noise and vibration.

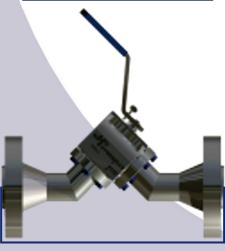


The Hydra HCY throttling valve is a highly adaptable control valve designed to meet a wide range of pressure and flow control requirements, from complex to simple. Its robust modular design ensures durability and straightforward maintenance. The modular approach streamlines the specification process, reducing the inventory of spare parts needed.

All valve and trim components are engineered for a perfect fit, enabling swift customization to accommodate specific process requirements of the user. The hub assemblies provide a variety of end connections, potentially removing the need for line swages and fitting oversized pipes. The valve trim and stem are fully guided, ensuring stability, reducing vibration, and cutting down on mechanical noise. The disc's free-floating design offers superior and lasting valve closure capabilities. The Twin Disc and Multistage system can handle high pressure drops. The design's simplicity also translates to easy and fast maintenance, without the necessity for specialized tools .

The valve allows for precise control with a 90-degree turn from fully closed to fully open. Its robust construction and generous use of hardened materials, combined with efficient flow geometry, ensure maximum production capacity and minimal maintenance needs, extending the mean time between services.

Valve Parts Description And Purpose


	Part	Purpose
1	Body	Pressure containment housing for trim and end connections
2	Turning Fork	Adjustment of disc to control fluid
3	Stem Bushing	Prevent wear of turning fork stem
4	Thrust Bearing	Support bearing for upthrust on turning fork
5	Disc Upstream	Fluid Control Element
6	Disc Downstream	Fluid Control Element
7	Segmented Ring (2 ea)	Structural Ring to Retain Hub in the Hub Retainer Ring
8	Hub Retainer Ring (2 ea)	Support Ring attaches Hub Assembly to the body
9	Hub (2 ea)	End Connection and Sleeve or Choke Bean housing
10	Bolt, Hub (12 ea)	Fastener to attach Hub Assembly to body
11	Wear Sleeve	Wear element to reduce damage to outlet hub
12	Choke Bean	Control element to create additional fluid pressure reduction
13	Product Plate	Product Identification and specification and Serial number
14	Calibration Plate	Indicates orifice opening and position

Optional Features

Actuation for automated control
Wear Sleeve for high pressure and abrasive fluids
Multistage DP system utilizing fixed orifice beans
for pressure control

HCY Assembly Dimensions

Size	Connection	Inches		
	1FNPT	11.537		
	150RF	11.537		
	300RF	13.049		
	400/600RF	13.289		
 1 in.	900/1500RF	14.049		
' '''.	150RTJ	18.563		
	300RTJ	13.429		
	400/600RTJ	13.793		
	900/1500RTJ	14.173		
	Bevel for Weld	18.685		
	2MNPT	11.537		
	2FNPT	11.537		
	150RF	13.049		
	300RF	13.289		
	400/600RF	14.049		
	900/1500RF	18.563		
2	2500RF	20.561		
	150RTJ	13.429		
	300RTJ	13.793		
	400/600RTJ	14.173		
	900/1500RTJ	18.685		
	2500RTJ	20.685		
	Bevel for Weld	9.811		

Major Component Standard Materials**

Description	Material		
Hub Assemblies	CF8M Cast SS		
0.0	ASTM A216 WCB CS		
O-Rings Backup Rings	PC Buna N PTFF		
Control Discs	Tungsten Carbide		
Turning Fork	17.4 H 1150 Stainless		
Steel Bolts	A193 Grade 8 zinc plated and PTFE coated		
Body	CF8M Cast SS		
Wear Sleeve*	Stellite 6		
Fix Beans*	17.4 H 900 Stainless Steel		
* Optional * ** For material ot	ner then Standard consult factory		

Tungsten Carbide Trim Options

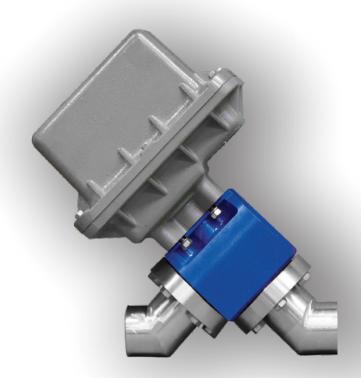
Orifices	Cv	64th inch Equiv. Dia.	Hole Geometry		
1.75 Inch Diameter Disc					
2 ea 1/8"	0.74	11.3	Round		
2 ea 3/16"	1.66	16.97	Round		
2 ea 1/4"	2.95	22.6	Round		
2 ea 3/8"	6.63	33.9	Round		
2 ea 1/2"	11.78	45.3	Round		
2 ea 3/4"	22.31	62.3	Pie		

Applications

Well Site Automation
Blow Down and Dump Valve
Heater Choke
Pump Bypass
Gas Lift Injection Control
Plunger Lift
Pressure Maintenance Disposal Well
Pump Startup
Water Injection
Enhanced Oil Recovery
Throttling Valve
High DP Valve
Remote Control for directional drilling
Manual and Automated Applications

Automation

Torque Rating

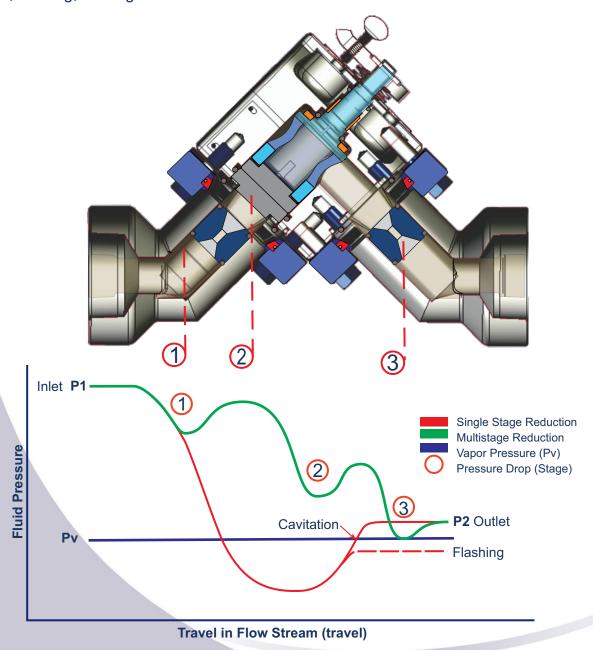

The HCY Twin Disc Throttling valves are specifically designed for applications involving control of water, oil, or natural gas. They are sometimes equipped with electric actuators, which protect the environment from the atmospheric venting of control gas typically associated with conventional diaphragm operated control valves. This design also offers a significant improvement in reliability and precision over pneumatics that rely on native gas sources, which can be contaminated with liquids and solids.

The HCY coupled with an electric actuator is designed for low energy requirements, operating at 12 or 24VDC with minimal current draw during movement. The control signal can be 4-20 mA, 1-5V, or a dry contact. The operating temperature range is -20°C to 70°C (-4°F to 158°F). The HCY valve can control pressures up to 5000 psi and can maintain a Class IV shut-off indefinitely without applied power

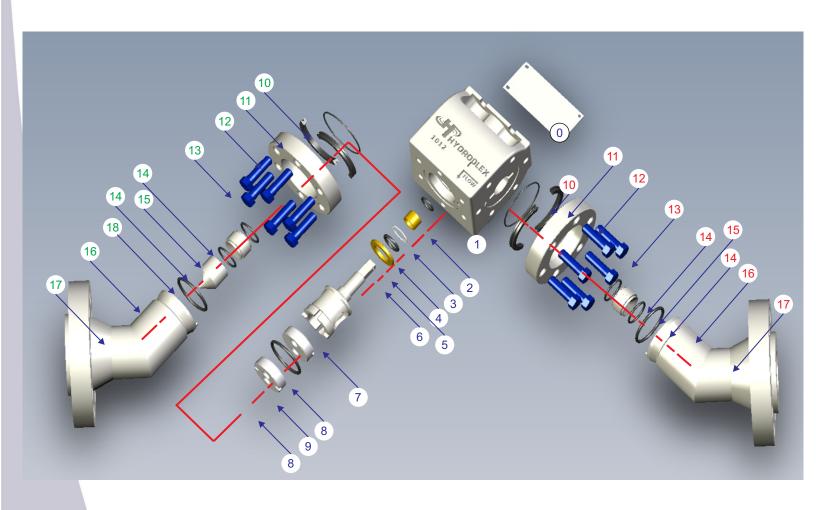
The assembly is highly responsive full open to full closed in seconds. In the power failure mode valve can be configured to open, close or remain in position. No power is required to maintain the selected mode.

The Hydra HCY valve can be easily modified from a manual operation to an automated valve in the field without interrupting service. The Direct Mount ISO F07 pad and ISO stem facilitate mounting of most electric and pneumatic actuation systems, it really is just removing the handle, dropping the actuator on and tightening the four mounting bolts. The low torque requirements reduce the power draw making this product ideal for low voltage applications such as solar powered installations.

Differential	Operating		
Pressure	Torque		
1,000 lbs.	160 inlbf		
2,000 lbs.	210 inlbf		
3,000 lbs.	270 inlbf		
4,000 lbs.	360 inlbf		
5,000 lbs.	480 inlbf		



Multistage Pressure Drop (MPD)


Multistage Pressure Drop (MPD) Configurations are utilized to decrease fluid pressure or flow (velocity). While single-stage trims often suffice, there are instances where a single pressure drop is not suitable due to process conditions. In these cases, an MPD valve is a more effective solution. The primary factor for using multiple restrictions is the pressure drop, irrespective of whether the fluid is a liquid or vapor/gas. A higher pressure drop leads to higher velocities, which can result in erosion, vibration, and noise issues.

For gas applications at critical flow, consideration should be given. If the process condition indicates critical flow with a single pressure drop, MPD valves can be employed to prevent operating at or above the critical pressure. The term "critical" refers to a pressure drop across the device that exceeds 50% of the absolute upstream pressure, at which point sonic velocity is attained.

In situations where high pressure drops in liquid flows are necessary, MPD assemblies should be employed. This allows for the pressure drop to be achieved while minimizing potential issues such as cavitation, flashing, and high noise levels

HCY Exploded View

#	DESCRIPTION	#	DESCRIPTION	#	DESCRIPTION	#	DESCRIPTION
	DATA PLATE		O-RING	10	O-RING	15	O-RING
1	BODY	6	THRUST BEARING	11	SPLIT RING	16	HUB
2	O-RING	7	TURNING FORK	12	RETAINING RING	17	HUB BOLTS
3	BUSHING	8	CONTROL DISC	13	O-RING	18	SLEEVE
4	BACKUP RING	9	O-RING	14	FIXED BEAN		

cfrooney 202.

SUMMAR

HCI THROTTLING VALVE

Configuration: Inline Segmented Body Thru port

Pressure: 5000 PSI Nominal Size: 2 Inch

Material Construction: 316 Stainless Steel (Bar)

End Connections: 1" and 2" Threaded / 1", 2" and 3" Flanged

Operation: Manual / Automated MultiStage Construction: 1 or 2 Stages

Design Function:

Application:

Location:

Fluid Maintenance (WOG)
Oil / Gas Production and Injection
Upstream gathering system

HCA THROTTLING VALVE

Configuration: Angle 90 degree body highly configurable

Pressure: 5000 PSI Nominal Size: 2 Inch

Material Construction: 316 Stainless Steel (CF8M cast)

End Connections: 1" and 2" Threaded / 1", 2" and 3" Flanged

Operation: Automated / Manual MultiStage Construction: 1, 2 or 3 Stage

Design Function:

Application:

Location:

Fluid Maintenance (WOG)

Oil / Gas Production and Injection

Upstream gathering system

HCY THROTTLING VALVE

Configuration: Inline "Y" body highly configurable

Pressure: 5000 PSI Nominal Size: 2 Inch

Material Construction: 316 Stainless Steel (CF8M cast)

End Connections: 1" and 2" Threaded / 1", 2" and 3" Flanged

Operation: Automated / Manual MultiStage Construction: 1, 2 or 3 Stage Design Function: Fluid Maintenance (WOG)

Application:

Oil / Gas Production and Injection
Upstream gathering system

CSX CONTROL VALVE

Configuration: Inline Globe Style body

Pressure: 5000 PSI
Nominal Size: 2 Inch
Metarial Construction: Carbon Sto

Material Construction: Carbon Steel (WCB cast)
End Connections: 1" and 2" Threaded / 2" Flanged

Operation: Automated / Manual MultiStage Construction: 1, 2 or 3 Stage

Design Function: Fluid Maintenance (WOG)
Application: Oil / Gas Production and Injection

Location: Upstream gathering system Gaslift and Plunger Lift

HYDRAMAX CHOKE VALVE

Configuration: Inline Segmented EXO Body

Pressure: 5000 PSI
Nominal Size: 3 Inch

Material Construction: Carbon Steel (Bar) Body / 316 Stainless Steel (Bar) Wetted

End Connections: 3" and 4" Flanged
Operation: Automated / Manual
MultiStage Construction: 1, 2 or 3 Stage

Design Function: Fluid Maintenance (WOG)
Application: Oil / Gas Production and Injection

Location: Upstream gathering system, pump pressure maintenance

Midstream Plant and Facility fluid control

MINIMAX THROTTLING / DUMP VALVE

Configuration: Inline or Angle Body Field configurable

Pressure: 3000 PSI
Nominal Size: 2 Inch

Nominal Size: 2 Inch
Material Construction: Carbon Steel (WCB cast)
1" and 2" Threaded
Operation: Automated / Manual
Fluid Maintenance (WOG)
Application: Oil / Gas Production and Injection

Location: Upstream gathering system, Separator let down

Hydroplex Corporation 230 W. Gloria Switch Rd. Lafayette, LA 70507 Telephone: +1 (337) 233-0626 web: www.hydroplex.com