Throttling DI FX High Pressure Pump, Valve, and System Specialists

Serving the Oil and Gas Industry since 1980 with products and solutions NOT JUST A SOURCE BUT A RESOURCE

Valve

Sizing

Application Information

Topics of Discussion

Terminology and Definitions Data for Sizing a Throttling Valve Sizing Equations

Lafayette, Lousiana

www.Hydroplex.com

Application Information

Terminology and Definitions

Trim – Those parts of a valve body assembly, excluding the valve body and bonnet which are exposed and in contact with the line fluid

Lafayette, Lousiana

www.Hydroplex.com

Application Information

Terminology and Definitions

Control Valve – A valve with a power positioning actuator used to move the valve trim to any position relative to valve port or ports in response and in proportion to an external signal.

Lafayette, Lousiana

www.Hydroplex.com

Application Information

Terminology and Definitions

Linear Flow Characteristics – An inherent flow characteristic which can be represented ideally by a straight line on a rectangular plot of flow versus percent rated travel

Lafayette, Lousiana

www.Hydroplex.com

Application Information

Terminology and Definitions

Capacity – Rate of flow through a valve under stated conditions

Dead Band – The degrees or precent the discs can be rotated without passing fluid through the orifices

Flow Characteristic – Relationship between flow through the valve and percent rated travel of the trim as the latter is varied from 0 to 100%

Lafayette, Lousiana

www.Hydroplex.com

Application Information

Terminology and Definitions

Fluid – Type of fluid and fluid state

Specific Gravity – Specific Gravity of flow at normal operating temperature

Molecular Weight - Molecular Weight of fluid

Viscosity – Viscosity at flowing temperature

Lafayette, Lousiana

www.Hydroplex.com

Application Information

Terminology and Definitions

Throttling – Providing a pressure drop by changing the turbulence in the process fluid in order to vary the fluid flow to change a process variable to the desired value

Lafayette, Lousiana

www.Hydroplex.com

Application Information

Throttling Methods

Lafayette, Lousiana

www.Hydroplex.com

Application Information

Terminology and Definitions

Vena Contracta – a point downstream of the orifice where the fluid stream reaches its minimum cross section and thus its maximum velocity and minimum pressure

Lafayette, Lousiana

www.Hydroplex.com

Application Information

Symbol Explanation

Lafayette, Lousiana

www.Hydroplex.com

Application Information

Symbol Definitions

Valve Flow Coefficient Dimensionless

Valve Flow Coefficient (Cv) is a valve's capacity for a liquid or gas to flow through it. It is technically defined as "the volume of pure water at 60°F (in US gallons) that will flow through a valve per minute with a pressure drop of 1 psi across the orifice."

Lafayette, Lousiana

www.Hydroplex.com

Application Information

Symbol Definitions

Inlet Pressure (P_1) – Outlet Pressure (P_2)

Pounds per Square Inch (PSI)

Lafayette, Lousiana

www.Hydroplex.com

Application Information

The Pressure Drop

www.Hydroplex.com

Application Information

Choked Flow/Critical Flow (Gases)

In Gas flow, when the Pressure Drop across the Throttling Area reaches Sonic Velocity, the Flow Rate will not increase even if the Outlet Pressure (Downstream of the Choke) is further reduced. Aside from intense noise, no damage is incurred unless the flow stream carries particulates. However, vibration may cause metal fatigue or bolting failure.

Application Information

ΔP Ratio

Application Information

Choked Flow (Liquids)

When Liquid flows through a choke at a condition where the pressure in the throttling area drops to the Vapor Pressure, the liquid will "Boil" and form Vapor Bubbles. Fully choked flow is the condition where so much vapor is formed that further reduction in the outlet pressure (downstream of choke) will not increase flow rate.

Application Information

Choked Critical Flow (Gas)

Lafayette, Lousiana

www.Hydroplex.com

Application Information

Choked Flow (Liquids)

Lafayette, Lousiana

www.Hydroplex.com

Application Information

Cavitation (Liquids)

Pressure Drop (ΔP/Differential Pressure) through the Orifice, if great enough, will cause the pressure to drop to the Liquid Vapor Pressure causing bubbles to form or boil. As the liquid moves farther away from the orifice there is an increase in pressure (Pressure Recovery) causing condensation of bubbles into the liquid. This collapsing of bubbles causes shock waves to occur in the choke body which may cause damage to valve and downstream piping.

Application Information

Cavitation (Liquids)

Lafayette, Lousiana

www.Hydroplex.com

Application Information

Cavitation

Occurs When Pressure Drops Below PV

Lafayette, Lousiana

Application Information

Flashing (Liquids)

If pressure recovery does not return to higher than the vapor pressure as the Vapor/Liquid stream moves farther away from the orifice (the pressure remains at liquid Vapor Pressure). This process is called "Flashing". Flashing occurs at High Velocities, is noisy, and causes Erosion if the flow stream carries sand particles.

Application Information

Flashing (Liquids)

Lafayette, Lousiana

www.Hydroplex.com

Application Information

Erosion

Erosion is the damage caused by the impingement of high velocity particles on the material surface

Lafayette, Lousiana

www.Hydroplex.com

Application Information

Freezing

The Expansion Cooling (JT effect) in Gas throttling often Freezes water or Hydrates in the valve body

Rule of Thumb foe every 100 psi drop in pressure with gas a 6-8 degree F drop in temperature can be expected.

Application Information

Freezing

Typical Methods of handling:

- Preheating the Gas
 Expansion (Line heaters or GPU)
- 2) Injecting Compounds which lower the Hydrate Formation Temperature
- 3) Jacketing & Heating the valve body

Application Information

Sizing Situations

Typical Applications which require specific sizing Requirements include:

Natural Gas Oil Water Oil and Water (two phase flow) Oil and Gas (two phase flow) Oil, Gas and Water (three phase flow) Liquid CO₂ Gaseous CO₂ Water and Steam (two phase flow)

Saturated Steam

Lafayette, Lousiana

Application Information

Sizing Data for Gas

- P₁ Inlet Pressure (psia, psig, bar a, kpa a)
- P₂ Outlet Pressure (psia, psig, bar a, kpa a)
- Q_{G} Flow (scf/d, m³/hr, kg/hr)
- G Specific Gravity
- T Temperature (F, °C, °R, °K) °

Application Information

Sizing Data for 2 Phase Flow

- P₁ Inlet Pressure (psia, psig, bar a, kpa a)
- P₂ Outlet Pressure (psia, psig, bar a, kpa a)
- Q_G Flow (scf/d, m³ /hr, kg/hr)
- Q_L Flow (bbl/d, gal/min, lbs/hr, kg/hr, m/d)
- SG_q- Specific Gravity of Gas
- SG_L- Specific Gravity of Liquid or API Gravity

T - Temperature (°F, °C, °R, °K)

Application Information

Sizing Data for CO₂ (Gaseous)

- P₁ Inlet Pressure (psia, psig, bar a, kpa a)
- P₂ Outlet Pressure (psia, psig, bar a, kpa a)
- Q_G Flow (scf/d, m³/hr, kg/hr)
- P_v Vapor Pressure (Function of Temperature)
- Specific Volume (Function of Temperature and (P) Pressure)
- G_q Specific Gravity of Gas

T - Temperature (°F, °C, °R, °K)

Application Information

Flow Equations for Compressible Fluids (Gas, Vapors, Steam, CO₂ etc.)

Non-Choked Turbulent Flow

 $Cv = \frac{W}{63.3Y} \sqrt{\frac{V}{XP_1}}$ [Mass Flow Rate]

Choked Turbulent Flow

Substitute X, for X in the above Equations

Where:

- W = Flow Rate (lb/hr)
- Y = Expansion Factor Limits (1.0 to 0.67)
- $X = DP/P_1$ (Pressure Drop Ratio)
- Q = Flow Rate (SCF/D)
- T_1 = Temperature (°R)

- V = Specific Volume (ft^3/lb)
- $_{1}$ = Inlet Pressure (PSIA)
- X_t = Critical Pressure Drop Ratio
- SG = Specific Gravity
- Z = Compressibility Factor

Lafayette, Lousiana

www.Hydroplex.com

Application Information

Sizing Data for Liquids

- P₁ Inlet Pressure (psia, psig, bar a, kpa a)
- P₂ Outlet Pressure (psia, psig, bar a, kpa a)
- Q_L Flow (scf/d, m³/hr, kg/hr)
- SG Specific Gravity
 - T Temperature (°F, °C, °R, °K)

Application Information

Flow Equations for Liquids (Water, Oil etc.)

Non-Choked Turbulent Flow

 $Cv = Q \sqrt{\frac{SG}{P_1 - P_2}}$

Choked Turbulent Flow

 $P_{vc} = F_f P_V$

Where:

- P_1 = Inlet Pressure (PSIA) Q = Flow Rate (SCF/D)F₁ = Liquid Pressure Recovery Factor F_f = Liquid Critical Pressure Ratio Factor $0.96 - 0.28 \left[\frac{P_v}{P_v} \right]^{\frac{1}{2}}$
- P_2 = Outlet Pressure (PSIA)
- SG = Specific Gravity
- P_{vc} = Pressure at Vena Contracta P_{v} = Liquid Vapor Pressure
- P_c = Liquid Critical Pressure

Lafayette, Lousiana

www.Hydroplex.com